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FOREWORD

This technical report discusses statistical aspects of electromag-

netic scattering by chaff clouds and was performed in-house at the Air

Force Avionics Laboratory under Project 7633, "Passive Electronic Counter-

measures," Task 13, "Aerospace Vehicle Signature Control/Masking", during
the period June 1973 to March 1974. The principal investigator for this

work was Dr. V. P. Pyati.

Acknowledgement is due Miss M. P. Gauvey, Mr. R. Puskar, Mr. W. F.

Bahret and Dr. P. Huffman of the Air Force Avionics Laboratory for re-
viewing the manuscript and offering helpful comments.

This report was s omitted for publication by the author on October

1974.
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SECTION I
INTRODUCTION

The problem of electromagnetic scattering by chaff clouds can be

treated in two distinct ¶ashions, namely, deterministic and nondeter

ministic or statistical. As nsight be expected, each has its own merits

and drawbacks. Deterministic methods predict the exact outcome in bny
given situation and are generally quite involved. In the case of chaff
clouds, there are two separate parts to the problem, the aerodynamic

and the electromagnetic. First one computes the orientations and pcsi-
tions of the individual dipoles in the chaff cloud using a generalized

six-degree-of-freedom-equations program and then the scattering be-

havior due to plane wave excitation determined by means of well-

documented standard techniques. In each case, a digital computer is

essential; but for the digital computer, such calculttions would be

unthinkable. Furtharmore, the effects of environment such as wind

shear and turbulence can be included as excitation parameters in the

aerodynamics calculations. Deterministic methods in the present case
are time-consuming and very expensive, and in view of the basic limita-

tions of computers such as finite memory, etc., the number of dipoles

that can be handled cannot possibly exceed a few hundrod. These tech-

niques are being investigated by the Air Force Avionics Laboratory

through other coaatractual efforts and will be reported later.

Statistical methods, on the other hand, are not concerned with any

one particular situation; they predict in a probabilistic fashion what

miq!at happen under a given set of circumstances. The methods are quite
general QA apply to a variety of problems occurrit'g in physics and

engineering. While deterministic methods are severely limited by the

number of dipoles that can be handled in the case of chaff, there is

no such restriction with statistical methods; in fact, the larger the
number of dipoles,, the note accurate the predictions become. This rv-

port treats the problem o.: electromagnetic scattering from chaff clouds

in a systtmatic adquartta~tive manner using statistical methods. The

material presented 14re has been gathered frow different sources and

put into self-contained fort. Certan mathematical derivations have

been sizplified considerably.
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The plan of this rcpert is as follows. First, basic material on

probabil.tq aid randon prc-esses is introduced. Then, first and second

probability densities of chaff cloud scattering are derived starting

from first principles. Relevant averages and auto-correlation are

obtained. The physical significance of each random function is ex-

plained with illustrations. A self-consistent mathematical model for

chaff cloud scattering is developed. This will be a basis for further

analy,-ical studies in such important areas as the effects of chaff echo

fluctuations on continuous wave, pulse doppler, and MTI radars.

Furthermore, we hope to combine statistical and deterministic methods

in a judicious manner so as to be able to predict chaff cloud behavior

more accurately.

2



SECTION I:

PROBABILITY THEORY

2.1 DEFINITIONS

A random var iable (r.v.) that is a function of time is called a

random proceas. Let us denote the r.v. by x(t) and :he value attained

at an instant of time tk by

Xk X (tk)(21

Because of the random nature, it is meaningless to talk about the

value attained at a particular instant of time or the values observed

over a period of time. Then how does one handle the problem? The

answer is, of course, by using the notion of probability which lends

to the precise definitions of certain distributions and averages which
can be predicted and observed with some measure of confidence. The

first and second order probability density functions (PDF) are defined

by

p, (x;t) dx - probability of finding x between

x and x+dx at time t

P2 (xlx 2;tl,t 2 ) dxIdx 2  joint probability of

finding a pair of values

X in the ranges XlX~dX

at time t and (x,.x 2.dx,)

at time t

These definitions can be extended to still higher order PDF, but they

will not be needed in our investigations. For convenience of writLAn,

the differential eltew .-.% will not be carried along with p1 and p.

but should always be tudarstood. In the definition of p,, it should

be underntood that both xI and x are random variables with the same

distribution p". These two variables are considered statistically

indapeadent or simply independent If

p2 (x1.x~t1.t,) P1 (Xp'I1 ) Pi X ~ 22



.P2 (X 1 "t11x2 ' 2 ) p1 (xV1 2 )

and p1 and p2 fulfill the relations

f P1 (x 1;t1 ) dx 1  1 (2.4)

i 2p (x 1,x,;t,.t 2 ) dx2  P1 (x 1 ,t 1 ) (2.S)

fP2 (x 2 ;t 2 1x 1 ;t 1 )dx 2 - 1 (22)

In relation to the independent variable titw t, ranIdom processes

axe divided into two categories. Theso are stationary ond nonst.ationary

pvocesses according as to whether the statistics are independent of or

dependent upor t. The latter processes aro extremely complex and will

not be cisidered here. Station,.ry processes are furrtor aubdivided

into strictly stationary and wide-sense stationary. Por our purposes,

it ouffices to consider only wide-sense stationary procosses. What tk.is

means is the following. The first order PtW is indep• dent of time and

the second order PDW depends only e'% the diffrernce t•- T. Hence

4



Such, of course, is not always the case. To handle the dependent case,

the notion of conditional probability in introduced. This is denoted

by P 2 (x 2 ,t 2 1xlwt 1 ) which gives the probability of finding x 2 in the

range (x 2 'x 2 + dx2 ) at time t 2 given that x - x1 at time t 1 . A vertical

bar separates the two sets of variables and the variables appearing on

the right side have already occurred and are considered no longer

random. One has, by definition

P 2 ("1 x2;t1 t2) p 2 (X2 Pt2 1x1 Pt1) P1 (x1,t)

(2.3)

" p2 (x1,t 1 Ix2 Pt2 ) p1 (x2 '2 )

and p1 and P2 fulfill the relations

f p, (x,;t,) dx, - 1 (2.4)

; P 2 (x 1 ,x2;t 1 't 2 ) dx 2 " p1 (x 1 't 1 ) (2.5)

P2 (x 2 ;t 2 lxl;tl) dx 2 U 1 (2.6)

In relation to the independent variable time t, random processes

are divided into two categories. These are stationary and nonstatiornary

processes according as to whether the statistics are independent of or

dependent upon t. The latter processes are extremely complex and will

not be considered here. Stationary processes are further subdivided

into strictly stationary and wide-sense stationary. For our purposes,

it suffices to consider only wide-sense stationary processes. What this

means is the following. The first order PDF is independent of time and

the sacond order PDF depends only on the difference t 2 -t 1 - T. Hence

4



p1 (x;t) p1 (X) (2.7)

p 2 (X'x 2 ;t1 ,t2 ) P 2 (x 1 .x 2 ;r) (2.8)

for wide-sense stationary processes.

The notion of homegeneity in time is sometimes employed to de-

scribe the foregoing random process. One should, of course, not lose

sight of the fact that x is still a function of time. From now on,

subscripts denoting the order of the PDF will also be omitted for con-

venience of writing.

The cumulative probability denoted by P(x) which gives the proba-

bility that -w < x < a is defined by

P(a) = Prob(--<x<a) = fa p(x)dx (2.9)
-00

from which it follows that

p(x) d P(x) (2.10)

The complementary function

P (X) = 1 P(x) (2.11)

is also commonly used.

The expectation or expected value of a function f(x) is defined as

E(f) = f f(x)p(x)dx (2.12)

with the most important ones being

E(x) = I xp(x)dx (2.13)

2) 2(x) ( f x p(x)dx (2.14)

5
La



The variance and standard deviation (SD) of x become

Va (X) =E (x') -E(x

SD = (X) v1.D(X)

If x represents voltag6 for instance, E(x) is the D.C. component,

E(X 2 the mean square and D(x) the A.C. component. In relation to the

second order PD? the most significant quantity of interest is the auto-

corrlaton uncion (T)defnedas

B(t) E (xx) X E(x(t)x(t+-c))

f ff x1 2 p (x1 ~x2;t) dx Idx 2  (.6

It may be noted that

2)

and for large L~ime lags, x dand X2 will be uncorrelated so that

2
B()=E (X) (2,18)

which is again the D.C. component.

The auto-covariance KMt and the normalized version RMt are de-

fined by

R(t) =(.0

It may be noted that -1 < R(T) <Z 1. Since the corre~lation function

gives the correlation between x(t) and x(t + t), the more rapidly x(t)

changes with time, the more rapidly R(t) decreases from its maximum

value of unity. This decrease w~ay be characterized by a correlation

time to defined by

R (to) 1/0 (2.21)

6



where e is the base of natural logarithim. The foregoing gives us a

clue -hat R(t) and the frequency spectrum must somehow be connected.

This indeed is the case and given by the Wiener-!Chintchine theorem.

a
S(w) = fo R(T) cos wt dt (2.22)

R(t) 2 ýP o (w)cos tw dw (2.23)

It is noted that the frequency spectrum t rnd R fzr= a FouiieT tri .s-

form pair. It will not always be possible to integrate (2.22), and in

such cases, it is customary to take = 27r/t
max 0

Now let us introduce the concept of time averages. Suppose there

are great numbers oZ identical radio receivers (ensemble) turned on

simultaneously. Let us also assume that the transients have died down

and steady conditions have been reached. The noise outjut voltagas of

all the receivers are recorded over a long period of time T. At a
definite time tl, we take the voltages x (t X (t compute

the average and the probability density function. This average is

called statistical or ensemble average and this is what we have con-

sidered thus far. Stationarity in this context means the statistics

are the s&ue regardless of the valx.e of t. We might just as well take

the output of a single receiver and define a time average in the

customary manner (denoted by a over bar)

lt I ir 1 x(t)dt(Z.24)T-c "7T f-T xtd

From an experimental veiwpoint, it is much e.sier and *-.re con-

venient to measure t4me averages. Naturally we would like to know the

relation between time ave:age x(tj and ensemble average E(X). Under the

so-called orgodic hypothesis, these two are equal. This identity will

be invoked here as a basis for comparing theory and eoeoriment. The

time average auto-correlation is defined by

7



~()=x(tjx(t+t

1 ir 1 T trd (2.25)

taking.a single realization of the random process.

Under the ergodic hypothesis for correlation functions

B (T) F(T) (2.26)

2.2 FUNCTIONS OF RANDOM VARIABLES

Suppose

y W ~x (2L27)

and we want to determine the PD? of y. If the in%.erse function

x= -(Y) (2.28)

is single valued thenp [*1y]i (.9

w~aere subscripts are used to distinguish different functions. In case

of multiple values, we first define single valued branches

1 (Y) 'X2  f 2  (y)~. .( . 0

anid get thi more general formula

~yY) aPX (XI) aj- x (X2) Y. 2.1

These ideal- are easily extended to functions of several random
vir.h.azces. For examle, if x and y are random variable~s and



u = u(x,y), v = v(x,y) (2.32)

then in terms of the joint density of x and y

P~(u'V) P p , (xY) (2.33)

where we have assumed the inverse functions

x x(u,v) y = y(u,v) (2.34)

are single valued. For multiple values, we proceed as in the case of
a single variable and obtain a result similar to (2.31). The last

member of Equation 2.33 is called the Jacobian of the transformation

ax ax

a@xluy (2.35)

u av

which is part and parcel of the transformatica. We must caution that

failure to include the Jacobian would lead to erroneous conclusions re-

garding PDF of the new variables.

2.3 RANDOM SIGNAL WITH UNIFORM PHASE
In order to provide a better feel for the material or probability

theory introduced in this chapter, let us consider, fox example, the

ensemble defined by the sinusoids

x(to) - A cos(wt+o) (2,36)

where A, w are fixed and $ distributed uniformly over a complete period.

This means
P ((2.37)

In practice, x(t,¢) may typically represent a scattired field, with

A, W, and 0 representing the ackplitude, carrier frequency, and phase,

respectively. The various pacbabilities and expected values can be



-I-ý

determined in the following marner. First we invert Equation 2.36 to

obtain the two branchest
€1= cos'l -w)-t, -i<

= cos-1Q) -wt+n, n< 2<2ff

Differentiating,

d41j Id 2
SxI TX T x• [=(2 x2) 172

(A -X)

so that
1

p(X) = 1(2.38)

, (A- 2

Note that the result does not depend on w or t (stationary). As

x -+ ±A, p(x) becomes infinite, which seems co conflict with the funda-

mental fact that probability can never exceed unity. The answer lies

in realizing that p(x) by itself has no physical meaning unless it is

multiplied by the differential element dx, which together give the

probability of finding x in the range (x,x + dx). This will never

exceed unity. We conclude, therefore, that the signal level is most

likely to be found near +A or -A. If A were not a constant, one has

p(x• L. j .p (A) dA (2.39)
(A2 -x2 )

where p(A) is the PDF of A.

For the second order PDF, all that is needed is the conditional

probability occurring in Equation 2.3. Since Equation 2.36 is a

deterministic function, once its value is known at ti, it is speci-

fied (functionally) for all other times. Thus

10



. . .. .................. . ..

X2 A cos (Wt2+~

= A cos WT 4" COS (2.40)

with T t 2-tI, as USv..•',

Employing the delta function notation to denote the PDF of a

constant, we have

P(X 21X1 ;") = i36 x 2  A cos WT + COS- (2.41)

It is much easier to compute ensemble and time averages, for example,

IT

E(x) = I xp(C)do = 0 (2.42)

X = A Cos (Wt+¢) = 0 (2.43)

A2

X 2  COS WtO (2.44)

A2

E (XJX 2 ) A2 COS Wt (2.45)

We note in particular, the process is not only stationary, but ergodic

in the sense

~ E(x) - x(2.46)

y(x ,x2 ) " 2  (2.47)

11



If the restriction that A be a constant iz removed, the second

relation will not be true in general, which means that the process fails

to be ergodic with respect to the auto-correlation function. Albo if I

is not uniformly distributed the process is no longer stationary. In

what follows, we will assume a uniform distribution for *.

12
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SECTION III

SCATTERING FROM CHAFF CLOUDS

3.1 GENERAL CONSIDERATIONS

The word chaff denotes a confusion type electronic countermeasure

employing a large! number of resonant dipoles. The dipoles are usually

in the form of very narrow aluminum strips or aluminum-coated glass

* fibers cut to a length of about one-half wavelengtr at the fr-equency
of interest. Since the bandwidth of :uarrow dipoles is quite ;3mall,

one generally uses several cuts to obtain coverage over a wide: bandq
of frequencies. When properly distributed in space, a chaff cloud may

occupy a large volume. At microwave frequencies a single chaff pack-

age contains literally hundreds of thousand dipoles.

For a distance R from the transmi~tter that is large compared to

the pulse width T, the number of %catterers or dipoles per re3o. .ution

cell is

2rR cT.31

where n is the average number of scatterers per unit v~olume, 0 the

radar beamwidth, and c the velocity of light. At any instant of
time, one may assume that the number of scatterers entering the range

call Js equal to that leaving so tnat N~ can be considered more or less

constant and not a random quantity. Makitng N random will complicate

the problem %uarecessarily without altering the conclusions in any

substantive manner.

It is obvious that a very large number of elementary targets are

involved in the scattering process. The signal scattered by each

elementary target will t~ave random phase and amplitude becauset

(1) the orientation of the dipole may change due to rotation, and

(2) the distance between radar and the dipole center may change.

The phaste of the returned signal is actually independdnt of the

orientation, but the amnplitude is not. However, if the rotation

rates ar4 small compared to time of observation, the amplitude

13



hanges may be neglected. The dependence of return power on initial
-. ientations can be included by suitably defined PDF for the angles.

The second cause can affect amplitude as well as phase. The amplitude

changes are quite small and may be ignored. The phase changes are

most important and have been studied quite thoroughly. One generally

assumes that the phase distributions are uniform over a full cycle.

What this means is that a single dipole may occupy any position within

the range cell with equipLvobability. Also, the number of dipoles wich

any given phase will be the saute as those with any other phase. The

dipoles will also be assumed to be independently moving and the effects

of mutual coupling will be neglected. The effects of wind will be

examined to some extent. Since we are dealing with noncoherent

scattering, mass motion of the cloud with constant speed will have

negligible effects because all the individual dipoles are affected

equally. However, if there is relative motion between the dipoles

either due to turbulence conditions or some other reason, the return
signal will fluctuate proportionately. These fluctuation rates are

attributable to the doppler beats of the individual scatterers. Using

probabilistic methods we will now develop the first and second order

statistics. The material has been gathered from several sources shown

under references. Some of the derivations, especially second order

statistics, are obtained by simpler means.

3.2 FIRST ORDER STATISTICS
For a collection of N scatterers, the resultant complex signal S

is given by the vector sum of the individual returns and if one

neglects multiple scattering,

N(kSuVeie ! e (3.2)S, -- e A~k) e" 3.2)

k-1

where A k) is the amplitude and 0 (k) the phase of the kth scatterer and

for convenience the additional phase term due to the carrier frequency

has been factored out. Our problem is then to find the probabilities

of V and 8 given the probabilities of A(k) and ý(k). The above sum

represents the familiar random walk problem in the complex plane.

14



Resolving S into real and imaginary parts, we have

Re S = V cos = x = • A(k) cos *(k) (3.3a)
k=1

m S =V sin e y A (k) sin ( (3.3b)
k=1

Knowing the joint PDF of A and 4 , one might compute the proba-

bilities of the individual terms and the sums by the methods outlined

in Chapter II. However, in view of a very powerful theorem called the

Central Limit Theorem, therz is no need to go about this the hard w..y.

Central Limit Theorem:
Let X (1), X(2) .... be N independent random variables all of which have

the same distribution with expectation 4 and variance 0. The dis-

tribution of the sum
N

s k- (3.4)k-1

approximates normal for large N with E(S) NU and D(S) No

In other words

p(S) 2 1 e2oN

The beauty of the theorem is that one need not know or be concerned
with the individual distributions. It is not known precisely how large

N should be, but the conditions are almost always satisfied for chaff

clouds. Let us for a moment assume that all Ltie dipoles are cut to

the sam length (later we *hall account for multiple length) and
(ki) (k)

A ) * are uncorrelated which is justified in view of earlier dis-

cussLons, as a matter of fact they are statistically independent. Let

the distribution for phises be

[I



1j

Now

E F~~u ~ i) =E (A~')/ i

an 6 is Kronecker delta [ (3.7)

and

S0

Invoking the central limit theorem

X'.19

2 N 2

where, since the amplitudes have identical PDF, E(A and a

similar expression for Y, of course. To proceed further, we need the

)joint PDF of X and Y. In general, it is not possible to write down

the joint density frow a knowledge of marginal densities. An excep-

tion to this is the normal process where all order densities are

normal. For the case of two variables, with zero mean and identical
2variances 02 the result is particularly smplo,

]r
1 I p[,Y .I - PYo I

S. ( L"

whore the correlation coefficioutL iu

r~u (3.9)

16
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From Equation 3.3, we note that E(XY) = 0, so that

-x +.2+y
2 a

p(XY) - e 2•o

(3.10)
= p (X)p(Y)

Introducing polar coordinates

Sv (x +Y ) -t nv= ( 2 2)12,O--tan 1  (yX)

we have, using Equation 2.33

V2

v 0g
p(V,O) - e (3.11)

0

and

10 202 NE (A")

The marginal densities are obtained by integration as usual.

v
2

T-

p(V) 2;. , -u0o. (3.13)

The resultant phaze is uniform rad the distribution for V is Qi~dod

tayloigh or X with two degrees of f-oaod. These results have been

known for about 80 years and apply to many kinds of scattering situa-

tions. The amplitude distribution of the elemantary signals d..tos tnot

17



enter into the picture and it is therefore quite erroneous to assume

that the dipoles in a cloud should have spherically uniform orienta-

tions to arrive at the above statistics. The requirement of uniform

phase is essential, however. For nonuniform phase distributions, the

analysis is very similar, but the results become quite complicated.

The important expectations in the present case are

"E (V) -

(3.14)

E (v) 1

LCO) 0

E ' 3.1)

The cumulative distribution of V is

P(V) i-e o (516

From a practical viewpoint the radar cross section (RCO) of the
2cloud, defined by I * V is more significbnt. One has

*/0p(1) u £.l hO(I17

and

SP(U) " 1-c 0.,"w

2The distribution is called ayleigh po•ewr or X with two degrees of

freedom. It is easily chocked that

ii18
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E (i1) 210
E ~2 = 0I (3.19)

SD = I

One normally expresses the SD as a percentage of the expectation which

in the present case is 100%. A 1,lot of the distribution of V and I are

shown in Figures 1 and 2. (Observe that the most probable value of RCS
is zero.) The median is 0.7 I1 and the signal intensity will be one

half the average level 39% of the time.

The results obtained thus far are quite general and let us now

specialize to chaff clouds. All that remains to be done is to relate

I to the dipole scattering properties. For a half wave dipole in-
0

clined at angles 6 and ý in a spherical coordinate system, the back

scattered. ;,plitude A for a plane wave traveling in the z direction

can be approximated by

A v'/ sin2 0 co.- (3.20)
0

where in terms of wavelength X, the broadside RCS u = 0.89X2.
0

What we now need is the joint PDF p(O,•) describing the orienta-

tions of the dipoles. It depends upon the rotation rates, enironment,

etc., in a complex fashion and no serious attempt has ever been made

K in this direction. One therefore makes the simplifying a priori

assumption that all orientations are equally likely so that

p(~) =sin 0 0<_<2Tn (3.21)

.. 0<0<-ff

whence

(2 No
I N(Go (3.22)

19
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This is the so-called tumble average RCS of the chaff cloud. In case

of orthogonal polarization reception, the above expression should

be divided by three. For chaff clouds that contain several cuts of

dipoles, we simply take

Io N 1 + N2 a 2 +... (3.23)

where the N's refer to number and a's suitably defined averages.

3.2.1 Steady Target Immersed In Chaff

The determination of the radar return of an aircraft flying

through a chaff corridor is of considerable practical importance. The

radar cross section of an aircraft changes with aspect considerably and

there are no reliable statistics on the subject. We will therefore

consider the aircraft as a steady target and determine the combined

statistics of aircraft plus chaff. This will be at least first step

toward understanding a more difficult problem. If the RCS of the2
steady target is m Io, we have for the probability densities

2 V2 -2Vm

m- Cos e
p(V,O) ye (3.24)

e0.

Integrating over 8

-m 2 + V2

p(V) 2V o Joe i Mo) (3.25)

and also

S+ I
/ (.6
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where Jo is zeroth order Bessel function. The distribution for phase

is quite complicated and will not be given here. The above is called

the Rice-Nakagami distribution originally discovered in the study of

fading of radio signals due to mixed propagation paths. Using the

known integrals,

-~a ~ eX j0  (i2VIx)dx (3.27)
a

e 2
• [2a2 + 4aý + a

(3.28)

J~xax j(iIidx

we get

EMI) (1+m 2 )(Io) (3.29)

which could have been guessed and

E (1z) 1'i (2 +. 4m'2 + 4) (3.30)
0

SI 0 ( m) /2(3.31)
SD-° (1 + 2m' )12{.1

F 1 + (.2

2S/7/m, for m >>1

22I



summarizing we note that RCS statistics of a chaff cloud with
2uniform distribution of dipoles follow X distribution with two degrees

of freedom. If there is a nonfluctuating tarzt in addition, we have a

Rice-Nakagami distribution. The fluctuations are quite large (100%)

in the first case and the presence of a strong steady target decreases

the fluctuations.

3.3 SECOND ORDER STATISTICS

Whereas the first order statistics tell us about the magnitude

of fluctuations, information regarding the rates of fluctuations is

obtained from the second order statistics which give the probability

of jointly finding two values of a random variable at different times.

Analogous to Equation 3.3, we define the joint density

p (XIX 2 ;tIY'IY2 ;t 2 ) (3.33)

where X, X(tl), X2 = X2 (t 2 ), etc. First, we assume the process is

stationary so that time appears as only the difference T = -t1.

Also since X and Y are statisti-'ally independent, we have

p X1 *X2;Y1 *Yz;7) p (Xl'X 2;T) p (Y 1 ,Y2 ;r) (3.34)

We first observe that the marginal densities of X1 and X are
1 2

normal and thus given by Equation 3.8. Therefore, analogous to Equation

3.9 we have

2 .2p- [xI'2gX1Xz +X
'o (1'''gZ) c .

pap•,~ .o( -g,)

.92
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where instead of the correlation coefficient, we have the correlation

function of the process given by

g(T) xx) (3.36)
X2(4 E (X)2 l/

By symmetry, identical expressions are valid for the Y-component.j

M4ore will be said about g(t) later, but now a few observations are in
ordsr. At Tr = 0, the two variables are fully correlated and at the
other -.xtreme when T =~ the variables are independent. In mathe-

matical týsrms

p(x1,x;) P p0 1) (X2 -X1)
A' (3.37)

=p (X2) 6 (X1 _X2)

P (Xl3 X2 ;-) P p0( 1) P (X2) (.8

Determination of the various densit~ es and expectations now becomes
a routine matter although the algebra becomie very tedious at times.

First we introduce polar-coordinates

V, (X24.y2) 1/2 o1 0 tan'( A)

24



to obtain

VIV2

V +V -2gV V2 Cos (01-02
exp "io 2 1 .2  (3.39)

o<V1 ,V 2 <C, -n<e 1 ,G2<Tr

Since the above cannot be written in the product form

p (� 1,v2 ) p (ei,12)

the amplitude V and phase 0 are correlated.

Integrating over tO'e angles

4V 1 V2  2gV1 V2  1P (VIOV2;. i2 1g) Jo [ ° ,g2 I

• L 2 (3.40)

S+V

25



If we denote the ratio V2 IV1 by Q

4QV~ 2gQV2 ~

P(QIV2;.r) I jT iJ 1-g,)

(3.41)

21 +Q2 )
exp 2 +{g~

and

P(Q;') f 0 P (QV 2 ;T) dV 2  (3.42)

using the integral

f xe acX J (iBX)dx * (3.43)
0 

22

the distribution is found to be

P(Q;) 2 (1-gz (3.44)Z' I÷GQ2) '.4 Q !<

26



and is plotted in Figure 3. N ote that as g -~1, it peaks at the center

like a delta function. Similarly one has for the intensities

-g 11 22

1 L'0 (ig 2 )j2

10 t~1~g) [ 10 -g2 )

O<I1,I<- (3.45)

and for the ratio 1 2/1,, denoted by W,

p(W;T) ig) (+) (3.46)

[(1+W) ~g2W

This distribution is shown in Figure 4. To get the joint density for

0, we integrate Equation 3.*39 over V1 and V2 . First we introduce

polar-coordinates

V1 *pCos ~,V *0sin ~
2

so that
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Tr/ 2
p ( T.2 r f sin 2ýp dýp

f0 p3 exp -Lp(.yJdp

with y = gCos (eoz

Noting that

0 2 aL

the above becomes

A2 w/2

8u (l~rsin X)



and using the result

SdX r 2 sin'Y

(1-Y sin XT 1/2

w- finally have

2"') 2

(3.47)

y In
sin )

y g('r) COS (iz

A more convenient expressi,= is obtained by introducing a new set

of variables

u • 1' 0 - 02w With the limits

-u(U*V<2: an4 -u2yV

30



The total probability for u is

p(u;T) fapuvTd

where care must be exercised in choosing the limi~ts of integration.

Manipulating the inequalities for u and v, we note

a-Max(-7r,-7r-u)

8= Min(iroit-u)

which leads to two possibilities

u<o, ai -1T-WU,

Hence

4 vI-g 2 Cos u)

~cos~~3.~ ~sif~ 1 ~cou)J (3.48)
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,w(4)

A very useful alternate form due to middleton~4 is

p(u;T) = u i + g d )
L WJCU )]

where

F~u [~i+ sinl (gCos U)] sin u

(-2 co 2  IT1/

The PDF of u is plotted in Figure 5. This completes the derivation

of first and second order statistics for the amplitude, inftensity

(RCS) an~d phase of the scattered signal by a chaff cloud.
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SECTION IV
CORRELATION FUNCTIONS

4.1 CLOUD CORRELATION FUNCTION q(T1

The correlation function g(r) defined by Equation 3.36 is about the
most significant quantity characterizing the second order statistics.
It is governed by the dynamics of the chaff cloud itself and only in
special cases is it possible to establish the connection between the

(k) (k) (k) (k)movement of chaff dipoles and g(r). Now if A1  l and A2
denote the amplitude and phase of the k scatterer at times t1 and
t2 t~ + T, then one has for the total field

N
Y ~ f~ cs p ~(4.1)

N
~ (k) ( k)(42

2~ 2 2(42

Simple calculations show that

(43

assuming ideaaticai scatterers. Furthermore

N N
E(X1X) *1 Af1)A(J)) E (c2*i o 45

Since the scatterers are independent

e Cos 00i) Cos 00) i

r3



contributions occurs only for i = .Therefore

g(¶) ( 1 V12) E(Cos 0, Cos 0p2) 2 (o * cs )

(4.6)

mpit e sude 1~ A2 wic is in keeping with the understanding that
ampitdechanges are not significant. In terms of the change in

phase between the two instants of time, let

so that

g(i) =2E [cos *i cos

=E(cos ~)(4.8)

An identical result will be obtained by considering the Y-component.

If a dipole moved a distance in the direction of the radar during

the time interval x, then

41
@ =T-~(4.9)

where X is the wavelength. If all direction3 of motion are equally

likely arising from, say, an isotropic turbulent wind field, then

Sthea joint density is

oV~m o~c, o~~ii(4.10)
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where V is the speed and e, • suitably defined angles with e = 0 de-
noting direction away from the radar. Also note that

f q(V)dV 1 (4.11)
0

Since • = VT cos 0, we have

p(,v ,)= p(EV',o,) p(Vo,¢)

6(E-VT cos O)p(VO,,) (4.12)

and therefore

p( dE sin fd8 q(V)6(ý-VT cos O)dV (4.13)
0 0

Following Siegert, we express the delta function as a Fourier

integral

6(.-VT cos 7) f b) duoei(t-V Cos 8) (4.14)

-0

so that, after integrating over 6,

-. •
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and using Equation 4.9

Sp() f de f dVq (V) (4.16)

and

g(r) = E(cos C) = f cos •p p(*)dp (4.17)

The integrations over U and J can be carried out in the following

manner .

8 ff didp cos , e sin(uVT)

MX0 S(I. VT)

- 2  ff cos , cos - dpdw

SI du si (V T) f d,ý Cos +
4 T2 0 JJ T0-I

,~~ *6I"'

6 (4.18)v/•
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I and f inally

g (T) =fq(V) si(?V/)(4.19)
0

We may now make the following observations. If a chaff cloud is

measured simultaneously at different frequencies and g('r) is plotted

against T/,, all the curves should coincide. From a frequency domain

viewpoint, it means the doppler beats are proportional to the carrier

frequency which is a well known fundamental result. By inverting

Equation 4.19

T(V I- IX~L Tg(T)sin(4TTVT/X)dT (4.20)

which may be utilized to estimate the speed distribution from the mea-

sured value of g(i).

4.2 SIGNAL CORRELATION FUNCTIONS
Using the definition (Equation 2.16), we have for the intensity

(RCS)

B(I ~ If 1 fJ lizp(I1.1 ;T)dI1 d12
0

and the auto-covariance

R(I~r g ()(4.22)
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This is an interesting result because it provides an indirect method
of determination g(T) from the RCS auto-correlation function. The

latter can be determined experimentally using a noncoherent pulse

radar. For the amplitude we have

co

B(V,T) = ff V1 V2 P(V 1 ,V 2 ;T)dVldV2
0

using Equation 3.40, and introducing new variables

Vs t 1 / 2 cos(0/2), V2 = t 1 12 sin(0/2)

we have

1 2i
Bn(VC) d sn

41 1i-9 ) 0

f dt t~ J0  [a si .] exp i(V2

0(1-g 2)2 T z [ 1LO ( f sin2 0 3 1 do
0 [~

by use of Equation 3.43, and lotting A - - g sin /2

Using elliptic integrals

£ 0 r ~j-(i )K(g)] (.3

39



where K and Eare complete elliptic integrals of the first and second
kind with modulus g.Furthermore, the auto-covariance is

R(~r =2E(g) Ki2 K(g) (.4

A To determine B(O,T) consider the second moment of u 1 (- 2)

-2E (e2) -2E (e 62

2w
= -2B(G,r) (4.25)

f ro which

B(8,T) -(4.26)

Now from Equation 3.49

E (u2 ) -
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with

F(X) = sin-(g Cos X)] sin X

(l-g 2 cos 2 X)1/2

The first term gives

2• X23

x dX (2 (4.28)

For the second term we integrate by parts zepeatedly and find

that

Sn (gcosx)] dX (4.29)

.a24 2

41
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The final integrations can be carried out by expanding the inverse

sine functions into power series and integrating term by term. First we

note below the known results

sin 1 (g cos X)
sin-~i~ cg os X) k21(

k=O 22(k!)2(2k+l)

2sinl 2 2kk!Z(g cos X) 2k+2
sn g(2k+l)!(k+l)
k=O

2it 2k÷di 2k+I21
f (cos X) dX 0 = X(cos X) dX

o 0

) I"2X 2'(k+2
f (cos X) kZdX
0 2 [(k+1)1

0 t:

21?
f X(COS X)2k4dX
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Then, it follows that

f sin (g cos X)dX =0
0

f X sin (g cos X)dX = 0

0

co

211 2 g2n

f sin' (g cos X) 2dX 7 2
0 n1n

n=1n

2Tr 2 2 0 2

f X sinl(g Cos X) 2dX= 77" g
0 n2

n-1

Substituting the above result in Equation 4.29 we have finally

2 /)
E u7 Tr sin- gk(sin-'g

g- n T(4.30j
nz1

and

•• a ~ 1  -1 * ( -:1  )
(0 01) sin, ( g.

fin
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The normalized phase auto-covari.ance beccmes

(432

n= 1

4.3 NUMERICAL RESULTS

The problem of determining the speed distribution of the dipoles

in a chaff cloud under a given set of environmental conditions is

extremely complex and so far no serious attempts have ever been made

in this direction. We will therefore be content by presenting results

for an assumed distribution. For example, if all the dipoles have

the same speedyVo

q(V) 6 (v-V0) (.3

and from Equation 4.19

= ~ (4(4.34)~

0

The auto-covariance function for the intensity becomes

[sin(41,,,r/) 2(4.35)

and the frequency speactrum is
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where 4irV0
WO 

-

The spectrum thus contains frequencies up to 4 Vo/ which is no

more than the doppler beat between dipoles moving directly into and away

from the radar beam. It should be emphasized that we are talking of

frequency spread due to, for example, turbulence and not the conven-

tional doppler frequency due to average motion of the entire cloud.
The latter cannot be measured by a noncoherent system because the

phase information is lost. For the special valie of g (T) given by

Equation 4.34, the three auto-covariance functions are plotted in

Figure 6 and Figure 7 shows typical experimental results obtained in
(6)

a recent AFAL contractual efiort. Although the data in the two

figures are unrelated, ont. notices certain trends. For the type of

chaff payloads employed, the correlation times were found to be in the

order of 10-20 milliseconds which means that the frequency components

are around 50-100 Hz.
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SECTION V

CONCLUSIONS AND RECOMMENDATIONS

This effort accomplished the task of obtaining mathematical

exp~ressions for the first and second order statistics of electro-

magnetic scattering from chaff clouds. These results can form a basis

for studying the effects of chaff clutter fluctuations on different

types of advanced radars in a statistical sense. For example, the

starting point in the case of noncoherent MT'II with a single delay line

canceller is the conditional probability for the amplitudes given by

p (V1 ,'V2 ;r)

~V2Il~T) p (Vi)

24 2gV V~

1 12

Herein~I listh hyia sgifcne fq. I 1, hee2 il

ofwhere i c thelaiontfunctionsiof candf and th targeth asmpliatuers

Details of this and similar studios will be presented in subsequent

reports.
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